Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorDe Gennaro, Danièle
hal.structure.identifier
dc.contributor.authorKubin, Andrea
hal.structure.identifierPolitecnico di Torino
dc.contributor.authorKubin, Anna
dc.date.accessioned2022-11-07T14:39:31Z
dc.date.available2022-11-07T14:39:31Z
dc.date.issued2023
dc.identifier.issn0362-546X
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/23104
dc.language.isoenen
dc.subjectGeometric evolutions
dc.subjectFractional mean curvature
dc.subjectAlexandrov theorem
dc.subjectMinimizing movements
dc.subjectVariational methods
dc.subject.ddc510en
dc.titleAsymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe characterize the long time behaviour of a discrete-in-time approximation of the volume preserving fractional mean curvature flow. In particular, we prove that the discrete flow starting from any bounded set of finite fractional perimeter converges exponentially fast to a single ball. As an intermediate result we establish a quantitative Alexandrov type estimate for normal deformations of a ball. Finally, we provide existence for flat flows as limit points of the discrete flow when the time discretization parameter tends to zero.
dc.publisher.cityParisen
dc.relation.isversionofjnlnameNonlinear Analysis
dc.relation.isversionofjnlvol228
dc.relation.isversionofjnldate2023
dc.relation.isversionofjnlpages27
dc.relation.isversionofdoi10.1016/j.na.2022.113200
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelMathématiquesen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2023-01-20T15:08:19Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record