
Lipschitz Continuity of the Schrödinger Map in Entropic Optimal Transport
Carlier, Guillaume; Chizat, Lenaic; Laborde, Maxime (2022), Lipschitz Continuity of the Schrödinger Map in Entropic Optimal Transport. https://basepub.dauphine.psl.eu/handle/123456789/23105
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
18
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chizat, Lenaic
Laborde, Maxime
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Abstract (EN)
The function that maps a family of probability measures to the solution of the dual entropic optimal transport problem is known as the Schrödinger map. We prove that when the cost function is Ck+1 with k in N* then this map is Lipschitz continuous from the L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal case. As applications, we prove displacement smoothness of the entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving this functional, including the Sinkhorn divergence and a multi-species system.Subjects / Keywords
Entropic Optimal Transport; Schrödinger map; Wasserstein gradient flowsRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Laborde, Maxime (2015-06) Document de travail / Working paper
-
Carlier, Guillaume; Laborde, Maxime (2020) Article accepté pour publication ou publié
-
Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume; Pegon, Paul; Tamanini, Luca (2022) Document de travail / Working paper
-
Chizat, Lénaïc (2017-11-10) Thèse