Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorCarlier, Guillaume
hal.structure.identifier
dc.contributor.authorChizat, Lenaic
HAL ID: 19586
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
dc.contributor.authorLaborde, Maxime
dc.date.accessioned2022-11-07T14:49:43Z
dc.date.available2022-11-07T14:49:43Z
dc.date.issued2022
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/23105
dc.language.isoenen
dc.subjectEntropic Optimal Transporten
dc.subjectSchrödinger mapen
dc.subjectWasserstein gradient flowsen
dc.subject.ddc515en
dc.titleLipschitz Continuity of the Schrödinger Map in Entropic Optimal Transporten
dc.typeDocument de travail / Working paper
dc.description.abstractenThe function that maps a family of probability measures to the solution of the dual entropic optimal transport problem is known as the Schrödinger map. We prove that when the cost function is Ck+1 with k in N* then this map is Lipschitz continuous from the L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains and covers the multi-marginal case. As applications, we prove displacement smoothness of the entropic optimal transport cost and the well-posedness of certain Wasserstein gradient flows involving this functional, including the Sinkhorn divergence and a multi-species system.en
dc.publisher.cityParisen
dc.identifier.citationpages18en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris Dauphine-PSLen
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2022
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2022-11-07T14:42:57Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record