
Hydrodynamic limit and cutoff for the biased adjacent walk on the simplex
Labbé, Cyril; Petit, Enguerand (2022), Hydrodynamic limit and cutoff for the biased adjacent walk on the simplex. https://basepub.dauphine.psl.eu/handle/123456789/23112
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahiers du CEREMADEPages
42
Metadata
Show full item recordAuthor(s)
Labbé, CyrilLaboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Petit, Enguerand
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We investigate the asymptotic in N of the mixing times of a Markov dynamics on N−1 ordered particles in an interval. This dynamics consists in resampling at independent Poisson times each particle according to a probability measure on the segment formed by its nearest neighbours. In the setting where the resampling probability measures are symmetric, the asymptotic of the mixing times were obtained and a cutoff phenomenon holds. In the present work, we focus on an asymmetric version of the model and we establish a cutoff phenomenon. An important part of our analysis consists in the derivation of a hydrodynamic limit, which is given by a non-linear Hamilton-Jacobi equation with degenerate boundary conditions.Subjects / Keywords
Mixing time; Cutoff; Adjacent walk; Hydrodynamic limit; Hamilton-Jacobi equationRelated items
Showing items related by title and author.
-
Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Lacoin, Hubert (2016) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié