• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

An algebraic convergence rate for the optimal control of Mckean-Vlasov dynamics

Cardaliaguet, Pierre; Daudin, Samuel; Jackson, Joe; Souganidis, Panagiotis E. (2022), An algebraic convergence rate for the optimal control of Mckean-Vlasov dynamics. https://basepub.dauphine.psl.eu/handle/123456789/23113

View/Open
CvPot20220324final.pdf (406.5Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
28
Metadata
Show full item record
Author(s)
Cardaliaguet, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Daudin, Samuel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Jackson, Joe
Department of Mathematics [Austin]
Souganidis, Panagiotis E.
Department of Mathematics [Chicago]
Abstract (EN)
We establish an algebraic rate of convergence in the large number of players limit of the value functions of N-particle stochastic control problems towards the value function of the corresponding McKean-Vlasov problem also known as mean field control. The rate is obtained in the presence of both idiosyncratic and common noises and in a setting where the value function for the McKean-Vlasov problem need not be smooth. Our approach relies crucially on uniform in N Lipschitz and semi-concavity estimates for the N-particle value functions as well as a certain concentration inequality.

Related items

Showing items related by title and author.

  • Thumbnail
    Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations 
    Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Regularity of the value function and quantitative propagation of chaos for mean field control problems 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Document de travail / Working paper
  • Thumbnail
    Some results on the McKean–Vlasov optimal control and mean field games : Limit theorems, dynamic programming principle and numerical approximations 
    Djete, Fabrice (2020-12-16) Thèse
  • Thumbnail
    On the existence of correctors for the stochastic homogenization of viscous hamilton-jacobi equations 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Monotone Solutions of the Master Equation for Mean Field Games with Idiosyncratic Noise 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo