• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Heat Flow in a Periodically Forced, Thermostatted Chain II

Komorowski, Tomasz; Lebowitz, Joel; Olla, Stefano (2023), Heat Flow in a Periodically Forced, Thermostatted Chain II, Journal of Statistical Physics, 190, 87. 10.1007/s10955-023-03103-9

View/Open
mito-nonstat-so7.pdf (548.7Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Journal of Statistical Physics
Volume
190
Number
87
Publisher
Springer
Published in
Paris
Publication identifier
10.1007/s10955-023-03103-9
Metadata
Show full item record
Author(s)
Komorowski, Tomasz
Lebowitz, Joel
Olla, Stefano
Abstract (EN)
We derive a macroscopic heat equation for the temperature of a pinned harmonic chain subject to a periodic force at its right side and in contact with a heat bath at its left side. The microscopic dynamics in the bulk is given by the Hamiltonian equation of motion plus a reversal of the velocity of a particle occurring independently for each particle at exponential times, with rate γ. The latter produces a finite heat conductivity. Starting with an initial probability distribution for a chain of n particles we compute the local temperature given by the expected value of the local energy and current. Scaling space and time diffusively yields, in the n → +∞ limit, the heat equation for the macroscopic temperature profile T (t, u), t > 0, u ∈ [0, 1]. It is to be solved for initial conditions T (0, u) and specified T (t, 0) = T − , the temperature of the left heat reservoir and a fixed heat flux J, entering the system at u = 1. J is the work done by the periodic force which is computed explicitly for each n.
Subjects / Keywords
Pinned harmonic chain; Periodic force; Heat equation for the macroscopic temperature; Dirichlet-Neumann type boundary condition; Work into heat

Related items

Showing items related by title and author.

  • Thumbnail
    Heat Flow in a Periodically Forced, Thermostatted Chain II 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano (2023) Article accepté pour publication ou publié
  • Thumbnail
    Heat Flow in a Periodically Forced, Thermostatted Chain 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano (2023) Article accepté pour publication ou publié
  • Thumbnail
    On the Conversion of Work into Heat: Microscopic Models and Macroscopic Equations 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano; Simon, Marielle (2023) Article accepté pour publication ou publié
  • Thumbnail
    Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs 
    Bonetto, Federico; Olla, Stefano; Lukkarinen, Jani; Lebowitz, Joel L. (2009) Article accepté pour publication ou publié
  • Thumbnail
    Ballistic and superdiffusive scales in the macroscopic evolution of a chain of oscillators 
    Komorowski, Tomasz; Olla, Stefano (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo