• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Some comparison results and a partial bang-bang property for two-phases problems in balls

Mazari, Idriss (2023), Some comparison results and a partial bang-bang property for two-phases problems in balls, Mathematics in Engineering, 5, 1, p. 1-23. 10.3934/mine.2023010

View/Open
ParabolicTwoPhase.pdf (529.9Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Mathematics in Engineering
Volume
5
Number
1
Publisher
AIMS Press
Pages
1-23
Publication identifier
10.3934/mine.2023010
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function a under L ∞ and L 1 constraints, this function a appearing in a diffusive term of the form −∇ • (a∇) in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the L ∞ constraints defining the admissible class. This is done using an oscillatory method.
Subjects / Keywords
Optimisation; Optimal Control of PDEs; Two-Phases Problems; Talenti Inequality

Related items

Showing items related by title and author.

  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
  • Thumbnail
    Shape optimization of a weighted two-phase Dirichlet eigenvalue 
    Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    A two-phase path-relinking algorithm for the generalized assignment problem 
    Alfandari, Laurent; Plateau, Agnès; Tolla, Pierre (2001) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo