Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorMazari, Idriss
HAL ID: 751069
dc.date.accessioned2022-11-22T13:33:20Z
dc.date.available2022-11-22T13:33:20Z
dc.date.issued2023
dc.identifier.issn2640-3501
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/23173
dc.language.isoenen
dc.subjectOptimisationen
dc.subjectOptimal Control of PDEsen
dc.subjectTwo-Phases Problemsen
dc.subjectTalenti Inequalityen
dc.subject.ddc515en
dc.titleSome comparison results and a partial bang-bang property for two-phases problems in ballsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function a under L ∞ and L 1 constraints, this function a appearing in a diffusive term of the form −∇ • (a∇) in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the L ∞ constraints defining the admissible class. This is done using an oscillatory method.en
dc.relation.isversionofjnlnameMathematics in Engineering
dc.relation.isversionofjnlvol5en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2023
dc.relation.isversionofjnlpages1-23en
dc.relation.isversionofdoi10.3934/mine.2023010en
dc.relation.isversionofjnlpublisherAIMS Pressen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2022-11-22T13:30:11Z
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record