Cutoff for the non reversible SSEP with reservoirs
Tran, Hong-Quan (2022), Cutoff for the non reversible SSEP with reservoirs. https://basepub.dauphine.psl.eu/handle/123456789/23255
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
23
Metadata
Show full item recordAbstract (EN)
We consider the Symmetric Simple Exclusion Process (SSEP) on the segment with two reservoirs of densities p,q∈(0,1) at the two endpoints. We show that the system exhibits cutoff with a diffusive window, thus confirming a conjecture of Gantert, Nestoridi, and Schmid in \cite{Gantert2020}. In particular, our result covers the regime p≠q, where the process is not reversible and there is no known explicit formula for the invariant measure. Our proof exploits the information percolation framework introduced by Lubetzky and Sly, the negative dependence of the system, and an anticoncentration inequality at the conditional level. We believe this approach is applicable to other models.Related items
Showing items related by title and author.
-
Salez, Justin (2023) Article accepté pour publication ou publié
-
Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
-
Xu, Lu (2022) Article accepté pour publication ou publié
-
Lacoin, Hubert (2017) Article accepté pour publication ou publié