• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Parabolic methods for ultraspherical interpolation inequalities

Dolbeault, Jean; Zhang, An (2023), Parabolic methods for ultraspherical interpolation inequalities, Discrete and Continuous Dynamical Systems. Series A, 43, 3&4, p. 1347-1365. 10.3934/dcds.2022080

View/Open
DZ-2022.pdf (585.1Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Discrete and Continuous Dynamical Systems. Series A
Volume
43
Number
3&4
Pages
1347-1365
Publication identifier
10.3934/dcds.2022080
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Zhang, An
School of Mathematical Science [Claremont]
Abstract (EN)
The carré du champ method is a powerful technique for proving interpolation inequalities with explicit constants in presence of a non-trivial metric on a manifold. The method applies to some classical Gagliardo-Nirenberg-Sobolev inequalities on the sphere, with optimal constants. Very nonlinear regimes close to the critical Sobolev exponent can be covered using nonlinear parabolic flows of porous medium or fast diffusion type. Considering power law weights is a natural question in relation with symmetry breaking issues for Caffarelli-Kohn-Nirenberg inequalities, but regularity estimates for a complete justification of the computation are missing. We provide the first example of a complete parabolic proof based on a nonlinear flow by regularizing the singularity induced by the weight. Our result is established in the simplified framework of a diffusion built on the ultraspherical operator, which amounts to reduce the problem to functions on the sphere with simple symmetry properties.
Subjects / Keywords
Gagliardo-Nirenberg-Sobolev inequalities; Caffarelli-Kohn-Nirenberg inequalities; interpolation; sphere; flows; optimal constants; weights; ultraspherical operator; carré du champ method; entropy methods; nonlinear parabolic equations; porous media; fast diffusion; regularity

Related items

Showing items related by title and author.

  • Thumbnail
    Interpolation inequalities in W1,p(S1) and carré du champ methods 
    Dolbeault, Jean; Garcia-Huidobro, Marta; Manásevich, Raul (2019) Document de travail / Working paper
  • Thumbnail
    Interpolation inequalities in W1,p(S1) and carré du champ methods 
    Dolbeault, Jean; Garcia-Huidobro, Marta; Manásevich, Raul (2020) Article accepté pour publication ou publié
  • Thumbnail
    Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences 
    Dolbeault, Jean; Esteban, Maria J.; Kowalczyk, Michal; Loss, Michael (2014) Chapitre d'ouvrage
  • Thumbnail
    Sharp interpolation inequalities on the sphere: new methods and consequences 
    Loss, Michael; Kowalczyk, Michal; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
  • Thumbnail
    Optimal functional inequalities for fractional operators on the sphere and applications 
    Dolbeault, Jean; Zhang, An (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo