• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities

Dolbeault, Jean; Zuniga, Andres (2022), Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities. https://basepub.dauphine.psl.eu/handle/123456789/23322

View/Open
WLSI.pdf (392.0Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
20
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Zuniga, Andres cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
On the Euclidean space, we establish some Weighted Logarithmic Sobolev (WLS) inequalities. We characterize a symmetry range in which optimal functions are radially symmetric, and a symmetry breaking range. (WLS) inequalities are a limit case for a family of subcritical Caffarelli-Kohn-Nirenberg (CKN) inequalities with similar symmetry properties. A generalized carré du champ method applies not only to the optimal solution of the nonlinear elliptic Euler-Lagrange equation and proves a rigidity result as for (CKN) inequalities, but also to entropy type estimates, with the full strength of the carré du champ method in a parabolic setting. This is a significant improvement on known results for (CKN). Finally, we briefly sketch some consequences of our results for the weighted diffusion flow.
Subjects / Keywords
Logarithmic Sobolev inequality; Hardy-Sobolev inequality; Caffarelli-Kohn-Nirenberg inequality; symmetry breaking; symmetry; concentration-compactness; optimal functions; optimal constant; carré du champ method

Related items

Showing items related by title and author.

  • Thumbnail
    Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality 
    Del Pino, Manuel; Dolbeault, Jean; Gentil, Ivan (2004) Article accepté pour publication ou publié
  • Thumbnail
    Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants 
    Dolbeault, Jean; Esteban, Maria J. (2011) Communication / Conférence
  • Thumbnail
    Radial symmetry and symmetry breaking for some interpolation inequalities 
    Tertikas, Achilles; Tarantello, Gabriella; Esteban, Maria J.; Dolbeault, Jean (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo