• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Regularity of the value function and quantitative propagation of chaos for mean field control problems

Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022), Regularity of the value function and quantitative propagation of chaos for mean field control problems. https://basepub.dauphine.psl.eu/handle/123456789/23361

View/Open
PropagChaos20220401.pdf (396.2Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
26
Metadata
Show full item record
Author(s)
Cardaliaguet, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Souganidis, Panagiotis E.
Department of Mathematics [Chicago]
Abstract (EN)
We investigate a mean field optimal control problem obtained in the limit of the optimal control of large particle systems with forcing and terminal data which are not assumed to be convex. We prove that the value function, which is known to be Lipschitz continuous but not of class C 1 , in general, without convexity, is actually smooth in an open and dense subset of the space of times and probability measures. As a consequence, we prove a new quantitative propagation of chaos-type result for the optimal solutions of the particle system starting from this open and dense set.

Related items

Showing items related by title and author.

  • Thumbnail
    Monotone Solutions of the Master Equation for Mean Field Games with Idiosyncratic Noise 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
  • Thumbnail
    An algebraic convergence rate for the optimal control of Mckean-Vlasov dynamics 
    Cardaliaguet, Pierre; Daudin, Samuel; Jackson, Joe; Souganidis, Panagiotis E. (2022) Document de travail / Working paper
  • Thumbnail
    Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations 
    Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Ergodic behavior of control and mean field games problems depending on acceleration 
    Cardaliaguet, Pierre; Mendico, Cristian (2021) Article accepté pour publication ou publié
  • Thumbnail
    On first order mean field game systems with a common noise 
    Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo