Regularity of the value function and quantitative propagation of chaos for mean field control problems
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022), Regularity of the value function and quantitative propagation of chaos for mean field control problems. https://basepub.dauphine.psl.eu/handle/123456789/23361
Voir/Ouvrir
Type
Document de travail / Working paperDate
2022Titre de la collection
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLVille d’édition
Paris
Pages
26
Métadonnées
Afficher la notice complèteAuteur(s)
Cardaliaguet, PierreCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Souganidis, Panagiotis E.
Department of Mathematics [Chicago]
Résumé (EN)
We investigate a mean field optimal control problem obtained in the limit of the optimal control of large particle systems with forcing and terminal data which are not assumed to be convex. We prove that the value function, which is known to be Lipschitz continuous but not of class C 1 , in general, without convexity, is actually smooth in an open and dense subset of the space of times and probability measures. As a consequence, we prove a new quantitative propagation of chaos-type result for the optimal solutions of the particle system starting from this open and dense set.Publications associées
Affichage des éléments liés par titre et auteur.
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Daudin, Samuel; Jackson, Joe; Souganidis, Panagiotis E. (2022) Document de travail / Working paper
-
Cardaliaguet, Pierre; Munoz, Sebastian; Porretta, Alessio (2023) Document de travail / Working paper
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Mendico, Cristian (2021) Article accepté pour publication ou publié