A decentralized algorithm for a Mean Field Control problem of Piecewise Deterministic Markov Processes
Seguret, Adrien; Le Corre, Thomas; Oudjane, Nadia (2022), A decentralized algorithm for a Mean Field Control problem of Piecewise Deterministic Markov Processes. https://basepub.dauphine.psl.eu/handle/123456789/23676
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
17
Metadata
Show full item recordAuthor(s)
Seguret, AdrienCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laboratoire de Finance des Marchés d'Energie [FiME Lab]
Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie [EDF R&D OSIRIS]
Le Corre, Thomas
Département d'informatique - ENS Paris [DI-ENS]
Oudjane, Nadia
Laboratoire de Finance des Marchés d'Energie [FiME Lab]
Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie [EDF R&D OSIRIS]
Abstract (EN)
This paper provides a decentralized approach for the control of a population of N agents to minimize an aggregate cost. Each agent evolves independently according to a Piecewise Deterministic Markov dynamics controlled via unbounded jumps intensities. The N-agent high dimensional stochastic control problem is approximated by the limiting mean field control problem. A Lagrangian approach is proposed. Although the mean field control problem is not convex, it is proved to achieve zero duality gap. A stochastic version of the Uzawa algorithm is shown to converge to the primal solution. At each dual iteration of the algorithm, each agent solves its own small dimensional sub problem by means of the Dynamic Programming Principal, while the dual multiplier is updated according to the aggregate response of the agents. Finally, this algorithm is used in a numerical simulation to coordinate the charging of a large fleet of electric vehicles (EVs for short) in order to track a target consumption profile. * This research benefited from the support of the FMJH Program Gaspard Monge for optimization and operations research and their interactions with data science.Related items
Showing items related by title and author.
-
Séguret, Adrien (2023-04-12) Thèse
-
Seguret, Adrien; Alasseur, Clémence; Bonnans, Joseph Frédéric; de Paola, Antonio; Oudjane, Nadia; Trovato, Vincenzo (2023) Article accepté pour publication ou publié
-
Seguret, Adrien (2022) Document de travail / Working paper
-
Seguret, Adrien; Wan, Cheng; Alasseur, Clémence (2021) Document de travail / Working paper
-
Seguret, Adrien (2022) Document de travail / Working paper