• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Path-dependent McKean-Vlasov equation: strong well-posedness and convergence of an interpolated Euler scheme

Bernou, Armand; Liu, Yating (2022), Path-dependent McKean-Vlasov equation: strong well-posedness and convergence of an interpolated Euler scheme. https://basepub.dauphine.psl.eu/handle/123456789/23679

View/Open
Path_depen_McKean_v12.pdf (411.4Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
33
Metadata
Show full item record
Author(s)
Bernou, Armand cc
Dipartimento di Matematica "Guido Castelnuovo" [Roma I] [Sapienza University of Rome]
Liu, Yating
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (FR)
On étudie l'équation de McKean-Vlasov avec dépendance en la trajectoire, dans laquelle les coefficients de dérive et de diffusion peuvent dépendre de toute la trajectoire du processus jusqu'au temps courant t, et de toutes les distributions marginales correspondantes. On prouve l'existence et l'unicité forte dans un cadre L^p, p ≥ 2, localement en temps. Nous introduisons ensuite un schéma d'Euler interpolé, un objet important pour la simulation numérique du processus, et nous prouvons la convergence de ce schéma vers la solution forte en norme L^p. Notre résultat est quantitatif et fournit un taux de convergence explicite. Nous appliquons nos résultats à deux équations de champ moyen issues de la biologie et des neurosciences.
Abstract (EN)
We consider the path-dependent McKean-Vlasov equation, in which both the drift and the diffusion coefficients are allowed to depend on the whole trajectory of the process up to the current time t, and depend on the corresponding marginal distributions. We prove the strong well-posedness of the equation in the L^p setting, p ≥ 2, locally in time. Then, we introduce an interpolated Euler scheme, a key object to simulate numerically the process, and we prove the convergence of this scheme towards the strong solution in the L^p norm. Our result is quantitative and provides an explicit rate. As applications we give results for two mean-field equations arising in biology and neuroscience.
Subjects / Keywords
path-dependent McKean-Vlasov equation; interpolated Euler scheme; well-posedness of non-linear SDEs; convergence rate of numerical scheme

Related items

Showing items related by title and author.

  • Thumbnail
    Particle method and quantization-based schemes for the simulation of the McKean-Vlasov equation 
    LIU, Yating (2022) Document de travail / Working paper
  • Thumbnail
    A statistical approach for simulating the density solution of a McKean-Vlasov equation 
    Hoffmann, Marc; Liu, Yating (2023) Document de travail / Working paper
  • Thumbnail
    Monotone convex order for the McKean-Vlasov processes 
    Liu, Yating; Pagès, Gilles (2022) Article accepté pour publication ou publié
  • Thumbnail
    Functional convex order for the scaled McKean-Vlasov processes 
    Liu, Yating; Pagès, Gilles (2022) Document de travail / Working paper
  • Thumbnail
    Some results on the McKean–Vlasov optimal control and mean field games : Limit theorems, dynamic programming principle and numerical approximations 
    Djete, Fabrice (2020-12-16) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo