• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

An approximation algorithm for the maximum spectral subgraph problem

Bazgan, Cristina; Beaujean, Paul; Gourdin, Eric (2022), An approximation algorithm for the maximum spectral subgraph problem, Journal of Combinatorial Optimization, 44, 3, p. 1880–1899. 10.1007/s10878-020-00552-w

Type
Article accepté pour publication ou publié
Date
2022
Journal name
Journal of Combinatorial Optimization
Volume
44
Number
3
Publisher
Springer
Pages
1880–1899
Publication identifier
10.1007/s10878-020-00552-w
Metadata
Show full item record
Author(s)
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Beaujean, Paul cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Orange Labs [Chatillon]
Gourdin, Eric
Orange Labs [Issy les Moulineaux]
Abstract (EN)
Modifying the topology of a network to mitigate the spread of an epidemic with epidemiological constant λ amounts to the NP-hard problem of finding a partial subgraph with maximum number of edges and spectral radius bounded above by λ. A software-defined network capable of real-time topology reconfiguration can then use an algorithm for finding such subgraph to quickly remove spreading malware threats without deploying specific security countermeasures. In this paper, we propose a novel randomized approximation algorithm based on the relaxation and rounding framework that achieves a O(logn) approximation in the case of finding a subgraph with spectral radius bounded by λ∈[logn,λ1(G)) where λ1(G) is the spectral radius of the input graph and n is the number of nodes. We combine this algorithm with a maximum matching algorithm to obtain a O(log2n)-approximation algorithm for all values of λ. We also describe how the mathematical programming formulation we give has several advantages over previous approaches which attempted at finding a subgraph with minimum spectral radius given an edge removal budget. Finally, we show that the analysis of our randomized rounding scheme is essentially tight by relating it to classical results from random graph theory.
Subjects / Keywords
Approximation algorithm; Relaxation and rounding; Semidefiniteprogramming; Spectral graph theory; Random graphs

Related items

Showing items related by title and author.

  • Thumbnail
    Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem 
    Bazgan, Cristina; Beaujean, Paul; Gourdin, Eric (2018) Communication / Conférence
  • Thumbnail
    Proportionally dense subgraph of maximum size: Complexity and approximation 
    Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément; Pontoizeau, Thomas (2019) Article accepté pour publication ou publié
  • Thumbnail
    Approximation algorithms for some vehicle routing problems 
    Bazgan, Cristina; Monnot, Jérôme; Hassin, Refael (2005) Article accepté pour publication ou publié
  • Thumbnail
    Efficient Algorithms for Finding the k Most Vital Edges for the Minimum Spanning Tree Problem 
    Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2011) Communication / Conférence
  • Thumbnail
    Exact and superpolynomial approximation algorithms for the densest k-subgraph problem 
    Bourgeois, Nicolas; Giannakos, Aristotelis; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo