Asymptotically quasiperiodic solutions for time-dependent Hamiltonians
Scarcella, Donato (2022), Asymptotically quasiperiodic solutions for time-dependent Hamiltonians. https://basepub.dauphine.psl.eu/handle/123456789/23729
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
37
Metadata
Show full item recordAbstract (EN)
In 2015, M. Canadell and R. de la Llave consider a time-dependent perturbation of a vector field having an invariant torus supporting quasiperiodic solutions. Under a smallness assumption on the perturbation and assuming the perturbation decays (when t → +∞) exponentially fast in time, they proved the existence of motions converging in time (when t → +∞) to quasiperiodic solutions associated with the unperturbed system (asymptotically quasiperiodic solutions). In this paper, we generalize this result in the particular case of timedependent Hamiltonian systems. The exponential decay in time is relaxed (due to the geometrical properties of Hamiltonian systems) and the smallness assumption on the perturbation is removed.Related items
Showing items related by title and author.
-
Scarcella, Donato (2022-12-08) Thèse
-
Scarcella, Donato (2022) Document de travail / Working paper
-
Lions, Pierre-Louis; Perthame, Benoît (1987) Article accepté pour publication ou publié
-
Trabelsi, Saber; Mauser, Norbert; Bardos, Claude; Catto, Isabelle (2009) Article accepté pour publication ou publié
-
Dolbeault, Jean; Rein, Gerhard (2001) Article accepté pour publication ou publié