Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorScarcella, Donato
dc.date.accessioned2023-01-16T10:21:02Z
dc.date.available2023-01-16T10:21:02Z
dc.date.issued2022
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/23729
dc.language.isoenen
dc.subject.ddc510en
dc.titleAsymptotically quasiperiodic solutions for time-dependent Hamiltoniansen
dc.typeDocument de travail / Working paper
dc.description.abstractenIn 2015, M. Canadell and R. de la Llave consider a time-dependent perturbation of a vector field having an invariant torus supporting quasiperiodic solutions. Under a smallness assumption on the perturbation and assuming the perturbation decays (when t → +∞) exponentially fast in time, they proved the existence of motions converging in time (when t → +∞) to quasiperiodic solutions associated with the unperturbed system (asymptotically quasiperiodic solutions). In this paper, we generalize this result in the particular case of timedependent Hamiltonian systems. The exponential decay in time is relaxed (due to the geometrical properties of Hamiltonian systems) and the smallness assumption on the perturbation is removed.en
dc.publisher.cityParisen
dc.identifier.citationpages37en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris Dauphine-PSLen
dc.subject.ddclabelMathématiquesen
dc.identifier.citationdate2022
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2023-01-16T10:19:10Z
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record