• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Universality of cutoff for exclusion with reservoirs

Salez, Justin (2023), Universality of cutoff for exclusion with reservoirs, Annals of Probability, 51, 2, p. 478 - 494. 10.1214/22-AOP1600

View/Open
AOP2201-015R1A0.pdf (308.7Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Annals of Probability
Volume
51
Number
2
Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
478 - 494
Publication identifier
10.1214/22-AOP1600
Metadata
Show full item record
Author(s)
Salez, Justin
Abstract (EN)
We consider the exclusion process with reservoirs on arbitrary networks. We characterize the spectral gap, mixing time, and mixing window of the process, in terms of certain simple spectral statistics of the underlying network. Among other consequences we establish a nonconservative analogue of Aldous’s spectral gap conjecture, and we show that cutoff occurs if and only if the product condition is satisfied. We illustrate this by providing explicit cutoffs on discrete lattices of arbitrary dimensions and boundary conditions which substantially generalize recent one-dimensional results. We also obtain cutoff phenomena in relative entropy, Hilbert norm, separation distance, and supremum norm. Our proof exploits negative dependence in a novel, simple way to reduce the understanding of the whole process to that of single-site marginals. We believe that this approach will find other applications.
Subjects / Keywords
Cutoff phenomenon; Exclusion process; mixing time; Negative dependence

Related items

Showing items related by title and author.

  • Thumbnail
    Cutoff for the non reversible SSEP with reservoirs 
    Tran, Hong-Quan (2022) Document de travail / Working paper
  • Thumbnail
    Hydrodynamics for One-Dimensional ASEP in Contact with a Class of Reservoirs 
    Xu, Lu (2022) Article accepté pour publication ou publié
  • Thumbnail
    Separation cutoff for activated random walks 
    Bristiel, Alexandre; Salez, Justin (2022) Document de travail / Working paper
  • Thumbnail
    Cutoff for non-negatively curved Markov chains 
    Salez, Justin (2021) Document de travail / Working paper
  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo