Cutoff for non-negatively curved Markov chains
Salez, Justin (2021), Cutoff for non-negatively curved Markov chains. https://basepub.dauphine.psl.eu/handle/123456789/23732
View/ Open
Type
Document de travail / Working paperDate
2021Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
21
Metadata
Show full item recordAbstract (EN)
Discovered by Aldous, Diaconis and Shahshahani in the context of card shuffling, the cutoff phenomenon has since then been established for a variety of Markov chains. However, proving cutoff remains a delicate affair, which requires a very detailed knowledge of the chain. Identifying the general mechanisms underlying this phase transition, without having to pinpoint its precise location, remains one of the most fundamental open problems in the area of mixing times. In the present paper, we make a step in this direction by establishing cutoff for all Markov chains with non-negative curvature, under a suitably refined product condition. The result applies, in particular, to the random walk on abelian Cayley expanders satisfying a mild degree assumption, hence to the random walk on almost all abelian Cayley graphs. Our proof relies on a quantitative entropic concentration principle, which we believe to lie behind all cutoff phenomena.Related items
Showing items related by title and author.
-
Münch, Florentin; Salez, Justin (2023) Article accepté pour publication ou publié
-
Salez, Justin; Tikhomirov, Konstantin; Youssef, Pierre (2023) Article accepté pour publication ou publié
-
Wu, Changye (2018-10-04) Thèse
-
Bristiel, Alexandre; Salez, Justin (2022) Document de travail / Working paper
-
Salez, Justin (2023) Article accepté pour publication ou publié