• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Modified log-Sobolev inequalities for strong-Rayleigh measures

Hermon, Jonathan; Salez, Justin (2023), Modified log-Sobolev inequalities for strong-Rayleigh measures, Annals of Applied Probability, 33, 2, p. 1301-1314. 10.1214/22-AAP1847

View/Open
1902.02775.pdf (381.5Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Annals of Applied Probability
Volume
33
Number
2
Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
1301-1314
Publication identifier
10.1214/22-AAP1847
Metadata
Show full item record
Author(s)
Hermon, Jonathan

Salez, Justin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We establish universal modified log-Sobolev inequalities for reversible Markov chains on the boolean lattice {0,1}n, under the only assumption that the invariant law π satisfies a form of negative dependence known as the stochastic covering property. This condition is strictly weaker than the strong Rayleigh property, and is satisfied in particular by all determinantal measures, as well as any product measure over the set of bases of a balanced matroid. In the special case where π is k−homogeneous, our results imply the celebrated concentration inequality for Lipschitz functions due to Pemantle & Peres (2014). As another application, we deduce that the natural Monte-Carlo Markov Chain used to sample from π has mixing time at most knloglog1π(x) when initialized in state x. To the best of our knowledge, this is the first work relating negative dependence and modified log-Sobolev inequalities.
Subjects / Keywords
Modified log-Sobolev inequalities; Negative dependence; stochastic covering

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence 
    Dolbeault, Jean; Esteban, Maria J.; Figalli, Alessio; Frank, Rupert L.; Loss, Michael (2022) Document de travail / Working paper
  • Thumbnail
    A sharp log-Sobolev inequality for the multislice 
    Salez, Justin (2021) Article accepté pour publication ou publié
  • Thumbnail
    Entropy dissipation estimates for inhomogeneous zero-range processes 
    Hermon, Jonathan; Salez, Justin (2021) Article accepté pour publication ou publié
  • Thumbnail
    The interchange process on high-dimensional products 
    Hermon, Jonathan; Salez, Justin (2021-02) Article accepté pour publication ou publié
  • Thumbnail
    Modified logarithmic Sobolev inequalities and transportation inequalities 
    Gentil, Ivan; Guillin, Arnaud; Miclo, Laurent (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo