Uniform-in-Time Propagation of Chaos for Mean Field Langevin Dynamics
Chen, Fan; Ren, Zhenjie; Wang, Songbo (2022), Uniform-in-Time Propagation of Chaos for Mean Field Langevin Dynamics. https://basepub.dauphine.psl.eu/handle/123456789/23740
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
31
Metadata
Show full item recordAuthor(s)
Chen, FanSchool of Mathematical Sciences [Shanghai]
Ren, Zhenjie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Wang, Songbo
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Abstract (EN)
We study the uniform-in-time propagation of chaos for mean field Langevin dynamics with convex mean field potenital. Convergences in both Wasserstein-2 distance and relative entropy are established. We do not require the mean field potenital functional to bear either small mean field interaction or displacement convexity, which are common constraints in the literature. In particular, it allows us to study the efficiency of the noisy gradient descent algorithm for training two-layer neural networks.Related items
Showing items related by title and author.
-
Kazeykina, Anna; Ren, Zhenjie; Tan, Xiaolu; Yang, Junjian (2020) Document de travail / Working paper
-
Hu, Kaitong; Ren, Zhenjie; Siska, David; Szpruch, Lukasz (2021) Article accepté pour publication ou publié
-
Cloez, Bertrand; Corujo, Josué (2022) Article accepté pour publication ou publié
-
Cloez, Bertrand; Corujo, Josue (2022) Article accepté pour publication ou publié
-
Ren, Zhenjie; Wang, Songbo (2022) Document de travail / Working paper