Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation
Wu, Changye; Robert, Christian P. (2020), Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation, in Kerrie L. Mengersen, Pierre Pudlo, Christian P. Robert, Case Studies in Applied Bayesian Data Science, Springer : Berlin Heidelberg, p. 89-119. 10.1007/978-3-030-42553-1_4
Type
Chapitre d'ouvrageDate
2020Book title
Case Studies in Applied Bayesian Data ScienceBook author
Kerrie L. Mengersen, Pierre Pudlo, Christian P. RobertPublisher
Springer
Series title
Lecture Notes in MathematicsPublished in
Berlin Heidelberg
ISBN
978-3-030-42552-4
Number of pages
420Pages
89-119
Publication identifier
Metadata
Show full item recordAuthor(s)
Wu, ChangyeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This chapter briefly recalls the major simulation based methods for conducting Bayesian computation, before focusing on partly deterministic Markov processes and a novel modification of the bouncy particle sampler that offers an interesting alternative when dealing with large datasets.Related items
Showing items related by title and author.
-
Wu, Changye (2018-10-04) Thèse
-
Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers Cappé, Olivier; Robert, Christian P.; Ryden, Tobias (2003) Article accepté pour publication ou publié
-
Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019) Document de travail / Working paper
-
Jacob, Pierre E.; Chopin, Nicolas; Robert, Christian P.; Rue, Havard (2009) Document de travail / Working paper
-
Hobert, James P.; Robert, Christian P. (2004) Article accepté pour publication ou publié