Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields
Fournais, Søren; Madsen, Peter (2020), Semi-classical Limit of Confined Fermionic Systems in Homogeneous Magnetic Fields, Annales Henri Poincaré, 21, 5, p. 1401-1449. 10.1007/s00023-019-00880-6
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Annales Henri PoincaréVolume
21Number
5Publisher
Springer
Pages
1401-1449
Publication identifier
Metadata
Show full item recordAuthor(s)
Fournais, SørenAarhus University
Madsen, Peter
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a system of N interacting fermions in R3 confined by an external potential and in the presence of a homogeneous magnetic field. The intensity of the interaction has the mean-field scaling 1/N. With a semi-classical parameter ℏ∼N−1/3, we prove convergence in the large N limit to the appropriate Magnetic Thomas-Fermi type model with various strength scalings of the magnetic field.Subjects / Keywords
Spectral theory; semi-classical analysis; mean-field limits; fermionicsystems; magnetic fieldsRelated items
Showing items related by title and author.
-
Fournais, Søren; Lewin, Mathieu; Solovej, Jan Philip (2018) Article accepté pour publication ou publié
-
Lewin, Mathieu; Madsen, Peter; Triay, Arnaud (2019) Article accepté pour publication ou publié
-
Gondran, Alexandre; Gondran, Michel (2011) Communication / Conférence
-
Lewin, Mathieu (2018) Article accepté pour publication ou publié
-
Lampart, Jonas; Lewin, Mathieu (2016) Article accepté pour publication ou publié