• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Clustering Trajectories of a Three-Way Longitudinal Dataset

Gettler Summa, Mireille; Goldfarb, Bernard; Vichi, Maurizio (2012), Clustering Trajectories of a Three-Way Longitudinal Dataset, in Mireille Gettler Summa, Leon Bottou, Bernard Goldfarb, Fionn Murtagh, Catherine Pardoux, Myriam Touati, Statistical Learning and Data Science, Routledge : London, p. 243

View/Open
Texte.pdf (614.7Kb)
Type
Chapitre d'ouvrage
Date
2012
Book title
Statistical Learning and Data Science
Book author
Mireille Gettler Summa, Leon Bottou, Bernard Goldfarb, Fionn Murtagh, Catherine Pardoux, Myriam Touati
Publisher
Routledge
Series title
Computer science and data analysis series
Published in
London
ISBN
978-1-4398-6763-1
Number of pages
243
Pages
243
Metadata
Show full item record
Author(s)
Gettler Summa, Mireille
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Goldfarb, Bernard
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vichi, Maurizio
Abstract (EN)
Longitudinal data are widely used information for repeated observations of the same units over a period of time in order to investigate developmental trends across life span of units. Each object depicts, in the space of the features and of time, a trajectory describing its changes over time. Here trajectories are modeled according to three features: trend, velocity and acceleration. Clustering trajectories of a longitudinal data set is an important issue to assess similarities in the histories of the observed units that we fully discuss in this chapter. Starting from the Tucker model, widely used in psychometrics, we consider the optimal partition of trajectories that minimizes a distance accounting for trend, for velocity and for acceleration of trajectories. A Sequential Quadratic Programming algorithm is proposed to solve the clustering problem and its performance is evaluated by simulation
Subjects / Keywords
Machine Learning; Statistical Methods; Data Mining; trajectories; T3Clus model; SQP algorithm

Related items

Showing items related by title and author.

  • Thumbnail
    Clustering Trajectories of a Three-Way Longitudinal Data Set 
    Gettler-Summa, Mireille; Goldfarb, Bernard; Vichi, Maurizio (2011) Chapitre d'ouvrage
  • Thumbnail
    Symbolic Processing for Three-Way Data 
    Pardoux, Catherine; Gettler-Summa, Mireille (1997) Communication / Conférence
  • Thumbnail
    New Approaches to Analysing Three-Way Data Arrays 
    Pardoux, Catherine; Gettler-Summa, Mireille (1999) Document de travail / Working paper
  • Thumbnail
    Symbolic Approaches for Three-way Data 
    Gettler-Summa, Mireille; Pardoux, Catherine (2000) Chapitre d'ouvrage
  • Thumbnail
    An homogeneity measurement for functional data clusters. 
    Gettler-Summa, Mireille; Goldfarb, Bernard (2009-11-16) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo