Sparse Weighted K-Means for Groups of Mixed-Type Variables
Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022), Sparse Weighted K-Means for Groups of Mixed-Type Variables, in Jan Faigl, Madalina Olteanu, Jan Drchal, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, Springer International Publishing : Berlin Heidelberg, p. 1-10. 10.1007/978-3-031-15444-7_1
Type
Communication / ConférenceDate
2022Conference title
14th International Workshop, WSOM+ 2022Conference date
2022-07Conference city
PragueConference country
Czech RepublicBook title
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data VisualizationBook author
Jan Faigl, Madalina Olteanu, Jan DrchalPublisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-031-15444-7
Number of pages
119Pages
1-10
Publication identifier
Metadata
Show full item recordAuthor(s)
Chavent, Marie
Méthodes avancées d’apprentissage statistique et de contrôle [ASTRAL]
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Cottrell, Marie
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Lacaille, Jérôme
Safran Aircraft Engines
Mourer, Alex
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Abstract (EN)
Assessing the underlying structure of a dataset is often done by training a clustering procedure on the features describing the data. In practice, while the data may be described by a large number of features, only a minority of them may be actually informative with regard to the structure. Furthermore, redundant features may also bias the clustering, whether one speaks of redundancy in the informative or the uninformative features. The present contribution aims at illustrating two sparse clustering methods designed for mixed data (made of numerical and categorical features). The proposed methods summarise redundant features into groups, and select the most relevant groups of features only in the clustering procedure. The performances and the interpretability of the sparse methods are illustrated on a real-life data set.Subjects / Keywords
Sparse clustering; Feature clustering; Feature selection; Group of features selection; Variable importanceRelated items
Showing items related by title and author.
-
Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022) Communication / Conférence
-
Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2020) Communication / Conférence
-
Chavent, Marie; Lacaille, Jérôme; Mourer, Alex; Olteanu, Madalina (2022) Communication / Conférence
-
Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2021) Communication / Conférence
-
Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina; Lévy, Bruno (2020) Article accepté pour publication ou publié