Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022), Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential, Annales de l'Institut Henri Poincaré, Probabilités et statistiques, 58, 2, p. 794-826. 10.1214/21-AIHP1174
Type
Article accepté pour publication ou publiéDate
2022Journal name
Annales de l'Institut Henri Poincaré, Probabilités et statistiquesVolume
58Number
2Publisher
Institute of Mathematical Statistics
Pages
794-826
Publication identifier
Metadata
Show full item recordAuthor(s)
Caputo, PietroDipartimento di Matematica [Roma TRE]
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lacoin, Hubert
Dipartimento di Matematica [Roma TRE]
Abstract (EN)
We consider the Gibbs sampler, or heat bath dynamics associated to log-concave measures on RN describing ∇φ interfaces with convex potentials. Under minimal assumptions on the potential, we find that the spectral gap of the process is always given by gapN=1−cos(π/N), and that for all ϵ∈(0,1), its ϵ-mixing time satisfies TN(ϵ)∼logN2gapN as N→∞, thus establishing the cutoff phenomenon. The results reveal a universal behavior in that they do not depend on the choice of the potential.Subjects / Keywords
Cutoff; mixing time; spectral gapRelated items
Showing items related by title and author.
-
Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Toninelli, Fabio Lucio; Simenhaus, François; Martinelli, Fabio; Lacoin, Hubert; Caputo, Pietro (2012) Article accepté pour publication ou publié
-
Lacoin, Hubert; Leblond, Rémi (2011) Article accepté pour publication ou publié