• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts

Aissi, Hassene; McCormick, S. Thomas; Queyranne, Maurice (2020), Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts, Integer Programming and Combinatorial Optimization, Springer International Publishing : Berlin Heidelberg, p. 27-39. 10.1007/978-3-030-45771-6_3

Type
Communication / Conférence
External document link
http://www.iasi.cnr.it/aussois/web/uploads/2020/slides/mccormickt.pdf
Date
2020
Conference title
21st International Conference, IPCO 2020
Conference date
2020-06
Conference city
Londres
Conference country
United Kingdom
Book title
Integer Programming and Combinatorial Optimization
Publisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-030-45770-9
Number of pages
450
Pages
27-39
Publication identifier
10.1007/978-3-030-45771-6_3
Metadata
Show full item record
Author(s)
Aissi, Hassene
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
McCormick, S. Thomas
Sauder School of Business [British Columbia] [Sauder]
Queyranne, Maurice
Sauder School of Business [British Columbia] [Sauder]
Abstract (EN)
The parametric global minimum cut problem concerns a graph G=(V,E) where the cost of each edge is an affine function of a parameter μ∈Rd for some fixed dimension d. We consider the problems of finding the next breakpoint in a given direction, and finding a parameter value with maximum minimum cut value. We develop strongly polynomial algorithms for these problems that are faster than a naive application of Megiddo’s parametric search technique. Our results indicate that the next breakpoint problem is easier than the max value problem.
Subjects / Keywords
Parametric optimization; Global minimum cut

Related items

Showing items related by title and author.

  • Thumbnail
    A Strongly Polynomial Time Algorithm for Multicriteria Global Minimum Cuts 
    Aissi, Hassene; Mahjoub, Ali Ridha; McCormick, S. Thomas; Queyranne, Maurice (2014) Communication / Conférence
  • Thumbnail
    Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation 
    Mahjoub, Ali Ridha; McCormick, S. Thomas (2010) Article accepté pour publication ou publié
  • Thumbnail
    Pseudo-polynomial algorithms for min-max and min-max regret problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Communication / Conférence
  • Thumbnail
    Two-edge connected subgraph with bounded rings problem: Polyhedral results and Branch-and-Cut 
    Pesneau, Pierre; Mahjoub, Ali Ridha; McCormick, S. Thomas; Fortz, bernard (2006) Article accepté pour publication ou publié
  • Thumbnail
    Separation Algorithms for Single-Machine Scheduling with Precedence Constraints 
    Mahjoub, Ali Ridha; McCormick, S. Thomas (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo