Monotone Solutions of the Master Equation for Mean Field Games with Idiosyncratic Noise
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022), Monotone Solutions of the Master Equation for Mean Field Games with Idiosyncratic Noise, SIAM Journal on Mathematical Analysis, 54, 4, p. 4198-4237. 10.1137/21M1450008
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
SIAM Journal on Mathematical AnalysisVolume
54Number
4Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
4198-4237
Publication identifier
Metadata
Show full item recordAuthor(s)
Cardaliaguet, PierreCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Souganidis, Panagiotis E.
Department of Mathematics [Chicago]
Abstract (EN)
We introduce a notion of weak solution of the master equation without idiosyncratic noise in Mean Field Game theory and establish its existence, uniqueness up to a constant and consistency with classical solutions when it is smooth. We work in a monotone setting and rely on Lions' Hilbert space approach. For the first-order master equation without idiosyncratic noise, we also give an equivalent definition in the space of measures and establish the well-posedness.Subjects / Keywords
mean field games; master equation; weak solutionsRelated items
Showing items related by title and author.
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2022) Document de travail / Working paper
-
Cardaliaguet, Pierre; Cirant, Marco; Porretta, Alessio (2022) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Porretta, Alessio (2019) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Delarue, François; Lasry, Jean-Michel; Lions, Pierre-Louis (2019) Ouvrage