• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Rethinking the Effective Sample Size

Elvira, Víctor; Martino, Luca; Robert, Christian (2022), Rethinking the Effective Sample Size, International Statistical Review, 90, 3, p. 525-550. 10.1111/insr.12500

Type
Article accepté pour publication ou publié
Date
2022
Journal name
International Statistical Review
Volume
90
Number
3
Publisher
Wiley
Pages
525-550
Publication identifier
10.1111/insr.12500
Metadata
Show full item record
Author(s)
Elvira, Víctor cc
School of Mathematics - University of Edinburgh
Martino, Luca
Signal Theory and Communications Department [Madrid] [DTSC]
Robert, Christian
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The effective sample size (ESS) is widely used in sample-based simulation methods for assessing the quality of a Monte Carlo approximation of a given distribution and of related integrals. In this paper, we revisit the approximation of the ESS in the specific context of importance sampling. The derivation of this approximation, that we will denote as , is partially available in a 1992 foundational technical report of Augustine Kong. This approximation has been widely used in the last 25 years due to its simplicity as a practical rule of thumb in a wide variety of importance sampling methods. However, we show that the multiple assumptions and approximations in the derivation of make it difficult to be considered even as a reasonable approximation of the ESS. We extend the discussion of the in the multiple importance sampling setting, we display numerical examples and we discuss several avenues for developing alternative metrics. This paper does not cover the use of ESS for Markov chain Monte Carlo algorithms.

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays 
    Müller, Peter; Parmigiani, Giovanni; Robert, Christian P.; Rousseau, Judith (2004) Article accepté pour publication ou publié
  • Thumbnail
    Explaining the Perfect Sampler 
    Casella, George; Lavine, Michael; Robert, Christian P. (2001) Article accepté pour publication ou publié
  • Thumbnail
    Coordinate sampler: a non-reversible Gibbs-like MCMC sampler 
    Wu, Changye; Robert, Christian P. (2020) Article accepté pour publication ou publié
  • Thumbnail
    Statistical Rethinking 
    Robert, Christian P. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Perfect samplers for mixtures of distributions 
    Casella, George; Mengersen, Kerrie; Robert, Christian P.; Titterington, Mike (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo