Bootstrap Percolation, Probabilistic Cellular Automata and Sharpness
Hartarsky, Ivailo (2022), Bootstrap Percolation, Probabilistic Cellular Automata and Sharpness, Journal of Statistical Physics, 187, 3. 10.1007/s10955-022-02922-6
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Journal of Statistical PhysicsVolume
187Number
3Publisher
Springer
Publication identifier
Metadata
Show full item recordAbstract (EN)
We establish new connections between percolation, bootstrap percolation, probabilistic cellular automata and deterministic ones. Surprisingly, by juggling with these in various directions, we effortlessly obtain a number of new results in these fields. In particular, we prove the sharpness of the phase transition of attractive absorbing probabilistic cellular automata, a class of bootstrap percolation models and kinetically constrained models. We further show how to recover a classical result of Toom on the stability of cellular automata w.r.t. noise and, inversely, how to deduce new results in bootstrap percolation universality from his work.Subjects / Keywords
Probabilistic cellular automata; Bootstrap percolation; Kinetically constrained models; Sharp phase transition; StabilityRelated items
Showing items related by title and author.
-
Hartarsky, Ivailo (2022-01-07) Thèse
-
Hartarsky, Ivailo; Mezei, Tamás Róbert (2020) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; Szabo, Reka (2022) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; N.B. de Lima, Bernardo (2022) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; Szabo, Reka (2022) Article accepté pour publication ou publié