• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Random Horizon Principal-Agent Problems

Lin, Yiqing; Ren, Zhenjie; Touzi, Nizar; Yang, Junjian (2022), Random Horizon Principal-Agent Problems, SIAM Journal on Control and Optimization, 60, 1, p. 355-384. 10.1137/20M1321620

View/Open
2002.10982.pdf (371.2Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
SIAM Journal on Control and Optimization
Volume
60
Number
1
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
355-384
Publication identifier
10.1137/20M1321620
Metadata
Show full item record
Author(s)
Lin, Yiqing
School of Mathematical Sciences [Shanghai]
Ren, Zhenjie cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Touzi, Nizar
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Yang, Junjian
Fakultät für Mathematik [Wien]
Abstract (EN)
We consider a general formulation of the random horizon principal-agent problem with a continuous payment and a lump-sum payment at termination. In the European version of the problem, the random horizon is chosen solely by the principal with no other possible action from the agent than exerting effort on the dynamics of the output process. We also consider the American version of the contract, where the agent can also quit by optimally choosing the termination time of the contract. Our main result reduces such nonzero-sum stochastic differential games to appropriate stochastic control problems which may be solved by standard methods of stochastic control theory. This reduction is obtained by following the Sannikov [Rev. Econom. Stud., 75 (2008), pp. 957--984] approach, further developed in [J. Cvitanić, D. Possamaï, and N. Touzi, Finance Stoch., 22 (2018), pp. 1--37]. We first introduce an appropriate class of contracts for which the agent's optimal effort is immediately characterized by the standard verification argument in stochastic control theory. We then show that this class of contracts is dense in an appropriate sense, so that the optimization over this restricted family of contracts represents no loss of generality. The result is obtained by using the recent well-posedness result of random horizon second-order backward SDEs in [Y. Lin, Z. Ren, N. Touzi, and J. Yang, Electron. J. Probab., 25 (2020), 99].
Subjects / Keywords
moral hazard; first best and second best contracting; second-order backward SDE; random horizon

Related items

Showing items related by title and author.

  • Thumbnail
    Principal-agent problem with multiple principals 
    Hu, Kaitong; Ren, Zhenjie; Yang, Junjian (2022) Article accepté pour publication ou publié
  • Thumbnail
    Second order backward SDE with random terminal time 
    Lin, Yiqing; Ren, Zhenjie; Touzi, Nizar; Yang, Junjian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Entropic optimal planning for path-dependent mean field games 
    Ren, Zhenjie; Tan, Xiaolu; Touzi, Nizar; Yang, Junjian (2022) Document de travail / Working paper
  • Thumbnail
    Nonlinear predictable representation and L1-solutions of second-order backward SDEs 
    Ren, Zhenjie; Touzi, Nizar; Yang, junjian (2022) Article accepté pour publication ou publié
  • Thumbnail
    Principal-Agent Problem with Common Agency without Communication 
    Mastrolia, Thibaut; Ren, Zhenjie (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo