• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On path-dependent multidimensional forward-backward SDEs

Hu, Kaitong; Ren, Zhenjie; Touzi, Nizar (2022), On path-dependent multidimensional forward-backward SDEs, Numerical Algebra, Control and Optimization (NACO). 10.3934/naco.2022010

View/Open
2201.05016.pdf (392.5Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Numerical Algebra, Control and Optimization (NACO)
Publication identifier
10.3934/naco.2022010
Metadata
Show full item record
Author(s)
Hu, Kaitong
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Ren, Zhenjie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Touzi, Nizar
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Abstract (EN)
This paper extends the results of Ma, Wu, Zhang, Zhang [11] to the context of path-dependent multidimensional forward-backward stochastic differential equations (FBSDE). By path-dependent we mean that the coefficients of the forward-backward SDE at time can depend on the whole path of the forward process up to time . Such a situation appears when solving path-dependent stochastic control problems by means of variational calculus. At the heart of our analysis is the construction of a decoupling random field on the path space. We first prove the existence and the uniqueness of decoupling field on small time interval. Then by introducing the characteristic BSDE, we show that a global decoupling field can be constructed by patching local solutions together as long as the solution of the characteristic BSDE remains bounded. Finally, we provide a stability result for path-dependent forward-backward SDEs.
Subjects / Keywords
Forward-Backward SDE; Backward Stochastic Riccati Equations; decoupling random field; Characteristic BSDE

Related items

Showing items related by title and author.

  • Thumbnail
    Comparison of viscosity solutions of semi-linear path-dependent PDEs 
    Ren, Zhenjie; Touzi, Nizar; Zhang, Jianfeng (2020) Article accepté pour publication ou publié
  • Thumbnail
    Entropic optimal planning for path-dependent mean field games 
    Ren, Zhenjie; Tan, Xiaolu; Touzi, Nizar; Yang, Junjian (2022) Document de travail / Working paper
  • Thumbnail
    Second order backward SDE with random terminal time 
    Lin, Yiqing; Ren, Zhenjie; Touzi, Nizar; Yang, Junjian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear predictable representation and L1-solutions of second-order backward SDEs 
    Ren, Zhenjie; Touzi, Nizar; Yang, junjian (2022) Article accepté pour publication ou publié
  • Thumbnail
    On the convergence of monotone schemes for path-dependent PDE 
    Ren, Zhenjie; Tan, Xiaolu (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo