A singular infinite dimensional Hamilton-Jacobi-Bellman equation arising from a storage problem
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2022), A singular infinite dimensional Hamilton-Jacobi-Bellman equation arising from a storage problem. https://basepub.dauphine.psl.eu/handle/123456789/24064
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
19
Metadata
Show full item recordAuthor(s)
Bertucci, CharlesCentre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Lasry, Jean-Michel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lions, Pierre-Louis
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In the first part of this paper, we derive an infinite dimensional partial differential equation which describes an economic equilibrium in a model of storage which includes an infinite number of non-atomic agents. This equation has the form of a mean field game master equation. The second part of the paper is devoted to the mathematical study of the Hamilton-Jacobi-Bellman equation from which the previous equation derives. This last equation is both singular and set on a Hilbert space and thus raises new mathematical difficulties.Related items
Showing items related by title and author.
-
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2021) Article accepté pour publication ou publié
-
Achdou, Yves; Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis; Rostand, Antoine; Scheinkman, José (2022) Article accepté pour publication ou publié
-
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2023) Document de travail / Working paper
-
Lions, Pierre-Louis; Trudinger, N.S. (1986) Article accepté pour publication ou publié
-
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2018) Article accepté pour publication ou publié