Fenchel-Young inequality with a remainder and applications to convex duality and optimal transport
Carlier, Guillaume (2022), Fenchel-Young inequality with a remainder and applications to convex duality and optimal transport. https://basepub.dauphine.psl.eu/handle/123456789/24065
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
10
Metadata
Show full item recordAbstract (EN)
This short note is devoted to some applications of a simple quantitative form of the Fenchel-Young inequality in Hilbert spaces. Our initial motivation comes from a stability question in optimal transport. We derive from the quantitative form of the Fenchel-Young inequality a simple and constructive proof of the Brøndsted-Rockafellar theorem and a perturbed primal-dual attainment result in Hilbert spaces.Subjects / Keywords
Fenchel-Young inequality in quantitative form; Brøndsted-Rockafellar theorem; Tilted convex duality; Stability of optimal transportRelated items
Showing items related by title and author.
-
Carlier, Guillaume (2008) Article accepté pour publication ou publié
-
Carlier, Guillaume (2003) Chapitre d'ouvrage
-
Santambrogio, Filippo; Carlier, Guillaume; Galichon, Alfred (2010) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
-
Carlier, Guillaume; Chernozhukov, Victor; De Bie, Gwendoline; Galichon, Alfred (2022) Article accepté pour publication ou publié