• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations

Mazari, Idriss; Nadin, Grégoire (2022), Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations. https://basepub.dauphine.psl.eu/handle/123456789/24089

View/Open
MultidimensionalReboot.pdf (546.8Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
23
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nadin, Grégoire
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Abstract (EN)
We propose a fine analysis of second order optimality conditions for the optimal control of semi-linear parabolic equations with respect to the initial condition. More precisely, we investigate the following problem: maximise with respect to y∈L∞(\OT) the cost functional J(y)=∬\OTj1(t,x,u)+∫\Oj2(x,u(T,⋅)) where ∂tu−Δu=f(t,x,u)+y,u(0,⋅)=u0 with some classical boundary conditions, under constraints of the form −κ0≤y≤κ1 a.e.,∫\Oy(t,⋅)=V0. This class of problems arises in several application fields. A challenging feature of these problems is the study of the so-called abnormal set $ \{-\kappa_0
Subjects / Keywords
Reaction-diffusion equation; semi-linear parabolic equation; optimal control; second order optimality conditions; shape optimisation; two-scale expansions

Related items

Showing items related by title and author.

  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative estimates for parabolic optimal control problems under L∞ and L1 constraints 
    Mazari, Idriss (2022) Article accepté pour publication ou publié
  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo