Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model
Merkl, Franz; Rolles, Silke; Tarres, Pierre (2018), Convergence of vertex-reinforced jump processes to an extension of the supersymmetric hyperbolic nonlinear sigma model, Probability Theory and Related Fields, 173, p. 1349–1387. 10.1007/s00440-018-0855-8
View/ Open
Type
Article accepté pour publication ou publiéDate
2018Journal name
Probability Theory and Related FieldsNumber
173Publisher
Springer
Pages
1349–1387
Publication identifier
Metadata
Show full item recordAuthor(s)
Merkl, FranzMathematical Institute
Rolles, Silke
Zentrum Mathematik [Munchen] [TUM]
Tarres, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Abstract (EN)
In this paper, we define an extension of the supersymmetric hyperbolic nonlinear sigma model introduced by Zirnbauer. We show that it arises as a weak joint limit of a time-changed version introduced by Sabot and Tarrès of the vertex-reinforced jump process. It describes the asymptotics of rescaled crossing numbers, rescaled fluctuations of local times, asymptotic local times on a logarithmic scale, endpoints of paths, and last exit trees.Subjects / Keywords
Vertex-reinforced jump process; Self-interacting random walks; Supersymmetric hyperbolic nonlinear sigma modelRelated items
Showing items related by title and author.
-
Sabot, Christophe; Tarres, Pierre (2015) Article accepté pour publication ou publié
-
Sabot, Christophe; Tarres, Pierre (2015) Article accepté pour publication ou publié
-
Sabot, Christophe; Tarres, Pierre (2022) Document de travail / Working paper
-
Sabot, Christophe; Tarrès, Pierre; Zeng, Xiaolin; Abbad, Narima (2017) Article accepté pour publication ou publié
-
Huang, Ruojun; Kious, Daniel; Sidoravicius, Vladas; Tarres, Pierre (2018) Article accepté pour publication ou publié