Branching diffusion representation of semilinear PDEs and Monte Carlo approximation
Henry-Labordère, Pierre; Oudjane, Nadia; Tan, Xiaolu; Touzi, Nizar; Warin, Xavier (2019), Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Annales de l'Institut Henri Poincaré, Probabilités et statistiques, 55, 1, p. 184-210. 10.1214/17-AIHP880
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Annales de l'Institut Henri Poincaré, Probabilités et statistiquesVolume
55Number
1Publisher
Institute of Mathematical Statistics
Pages
184-210
Publication identifier
Metadata
Show full item recordAbstract (EN)
We provide a representation result of parabolic semi-linear PD-Es, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod [23], Watanabe [27] and McKean [18], by allowing for polynomial nonlinearity in the pair (u, Du), where u is the solution of the PDE with space gradient Du. Similar to the previous literature, our result requires a non-explosion condition which restrict to " small maturity " or " small nonlinearity " of the PDE. Our main ingredient is the automatic differentiation technique as in [15], based on the Malliavin integration by parts, which allows to account for the nonlin-earities in the gradient. As a consequence, the particles of our branching diffusion are marked by the nature of the nonlinearity. This new representation has very important numerical implications as it is suitable for Monte Carlo simulation. Indeed, this provides the first numerical method for high dimensional nonlinear PDEs with error estimate induced by the dimension-free Central limit theorem. The complexity is also easily seen to be of the order of the squared dimension. The final section of this paper illustrates the efficiency of the algorithm by some high dimensional numerical experiments.Subjects / Keywords
Semilinear PDEs; branching processes; Monte-Carlo methodsRelated items
Showing items related by title and author.
-
Touzi, Nizar; Tan, Xiaolu; Henry-Labordère, Pierre (2014) Article accepté pour publication ou publié
-
Henry-Labordère, Pierre; Tan, Xiaolu; Touzi, Nizar (2017) Article accepté pour publication ou publié
-
Henry-Labordère, Pierre; Tan, Xiaolu; Touzi, Nizar (2016) Article accepté pour publication ou publié
-
Bouchard, Bruno; Tan, Xiaolu; Warin, Xavier; Zou, Yiyi (2017) Article accepté pour publication ou publié
-
Bouchard, Bruno; Tan, Xiaolu; Warin, Xavier (2019) Article accepté pour publication ou publié