The robust pricing–hedging duality for American options in discrete time financial markets
Aksamit, Anna; Deng, Shuoqing; Obloj , Jan; Tan, Xiaolu (2019), The robust pricing–hedging duality for American options in discrete time financial markets, Mathematical Finance, 29, 3, p. 861-897. 10.1111/mafi.12199
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Mathematical FinanceVolume
29Number
3Publisher
Wiley
Pages
861-897
Publication identifier
Metadata
Show full item recordAbstract (EN)
We aim to generalize the duality results of Bouchard & Nutz [10] to the case of American options. By introducing an enlarged canonical space, we reformulate the superhedging problem for American options as a problem for European options. Then in a discrete time market with finitely many liquid options, we show that the minimum superhedging cost of an American option equals to the supremum of the expectation of the payoff at all (weak) stopping times and under a suitable family of martingale measures. Moreover, by taking the limit on the number of liquid options, we obtain a new class of martingale optimal transport problems as well as a Kantorovich duality result.Subjects / Keywords
Super-replication; American option; nondominated model; martingale; optimal transport; Kantorovich dualityRelated items
Showing items related by title and author.
-
Temam, Emmanuel; Bouchard, Bruno (2005) Article accepté pour publication ou publié
-
Bouchard, Bruno; Tan, Xiaolu (2022) Article accepté pour publication ou publié
-
Bouchard, Bruno; Deng, Shuoqing; Tan, Xiaolu (2018) Article accepté pour publication ou publié
-
Deng, Shuoqing; Tan, Xiaolu; Yu, Xiang (2020) Article accepté pour publication ou publié
-
Lépinette, Emmanuel (2019) Article accepté pour publication ou publié