• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The robust pricing–hedging duality for American options in discrete time financial markets

Aksamit, Anna; Deng, Shuoqing; Obloj , Jan; Tan, Xiaolu (2019), The robust pricing–hedging duality for American options in discrete time financial markets, Mathematical Finance, 29, 3, p. 861-897. 10.1111/mafi.12199

View/Open
1604.05517v1.pdf (497.1Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Mathematical Finance
Volume
29
Number
3
Publisher
Wiley
Pages
861-897
Publication identifier
10.1111/mafi.12199
Metadata
Show full item record
Author(s)
Aksamit, Anna
Deng, Shuoqing
Obloj , Jan
Tan, Xiaolu
Abstract (EN)
We aim to generalize the duality results of Bouchard & Nutz [10] to the case of American options. By introducing an enlarged canonical space, we reformulate the superhedging problem for American options as a problem for European options. Then in a discrete time market with finitely many liquid options, we show that the minimum superhedging cost of an American option equals to the supremum of the expectation of the payoff at all (weak) stopping times and under a suitable family of martingale measures. Moreover, by taking the limit on the number of liquid options, we obtain a new class of martingale optimal transport problems as well as a Kantorovich duality result.
Subjects / Keywords
Super-replication; American option; nondominated model; martingale; optimal transport; Kantorovich duality

Related items

Showing items related by title and author.

  • Thumbnail
    On the Hedging of American Options in Discrete Time Markets with Proportional Transaction Costs 
    Temam, Emmanuel; Bouchard, Bruno (2005) Article accepté pour publication ou publié
  • Thumbnail
    Understanding the dual formulation for the hedging of path-dependent options with price impact 
    Bouchard, Bruno; Tan, Xiaolu (2022) Article accepté pour publication ou publié
  • Thumbnail
    Superreplication with proportional transaction cost under model uncertainty 
    Bouchard, Bruno; Deng, Shuoqing; Tan, Xiaolu (2018) Article accepté pour publication ou publié
  • Thumbnail
    Utility maximization with proportional transaction costs under model uncertainty 
    Deng, Shuoqing; Tan, Xiaolu; Yu, Xiang (2020) Article accepté pour publication ou publié
  • Thumbnail
    A short introduction to arbitrage theory and pricing in mathematical finance for discrete-time markets with or without friction 
    Lépinette, Emmanuel (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo