The robust pricing–hedging duality for American options in discrete time financial markets
Aksamit, Anna; Deng, Shuoqing; Obloj , Jan; Tan, Xiaolu (2019), The robust pricing–hedging duality for American options in discrete time financial markets, Mathematical Finance, 29, 3, p. 861-897. 10.1111/mafi.12199
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2019Nom de la revue
Mathematical FinanceVolume
29Numéro
3Éditeur
Wiley
Pages
861-897
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We aim to generalize the duality results of Bouchard & Nutz [10] to the case of American options. By introducing an enlarged canonical space, we reformulate the superhedging problem for American options as a problem for European options. Then in a discrete time market with finitely many liquid options, we show that the minimum superhedging cost of an American option equals to the supremum of the expectation of the payoff at all (weak) stopping times and under a suitable family of martingale measures. Moreover, by taking the limit on the number of liquid options, we obtain a new class of martingale optimal transport problems as well as a Kantorovich duality result.Mots-clés
Super-replication; American option; nondominated model; martingale; optimal transport; Kantorovich dualityPublications associées
Affichage des éléments liés par titre et auteur.
-
Temam, Emmanuel; Bouchard, Bruno (2005) Article accepté pour publication ou publié
-
Bouchard, Bruno; Tan, Xiaolu (2022) Article accepté pour publication ou publié
-
Bouchard, Bruno; Deng, Shuoqing; Tan, Xiaolu (2018) Article accepté pour publication ou publié
-
Deng, Shuoqing; Tan, Xiaolu; Yu, Xiang (2020) Article accepté pour publication ou publié
-
Lépinette, Emmanuel (2019) Article accepté pour publication ou publié