Deep Generative Missingness Pattern-Set Mixture Models
Ghalebikesabi, Sahra; Cornish, Rob; Holmes, Chris; Kelly, Luke Joseph (2021), Deep Generative Missingness Pattern-Set Mixture Models, in Arindam Banerjee, Kenji Fukumizu, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR Vol. 130, Proceedings of Machine Learning Research (PMLR), p. 3727-3735
View/ Open
Type
Communication / ConférenceDate
2021Conference title
24th International Conference on Artificial Intelligence and StatisticsConference date
2021-04Conference city
VirtualConference country
FranceBook title
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR Vol. 130Book author
Arindam Banerjee, Kenji FukumizuPublisher
Proceedings of Machine Learning Research (PMLR)
Pages
3727-3735
Metadata
Show full item recordAuthor(s)
Ghalebikesabi, SahraUNIVERSITY OF OXFORD GBR
Cornish, Rob
Holmes, Chris
Department of Statistics [Oxford]
Kelly, Luke Joseph
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose a variational autoencoder architecture to model both ignorable and nonignorable missing data using pattern-set mixtures as proposed by Little (1993). Our model explicitly learns to cluster the missing data into missingness pattern sets based on the observed data and missingness masks. Underpinning our approach is the assumption that the data distribution under missingness is probabilistically semi-supervised by samples from the observed data distribution. Our setup trades off the characteristics of ignorable and nonignorable missingness and can thus be applied to data of both types. We evaluate our method on a wide range of data sets with different types of missingness and achieve state-of-the-art imputation performance. Our model outperforms many common imputation algorithms, especially when the amount of missing data is high and the missingness mechanism is nonignorable.Related items
Showing items related by title and author.
-
Kelly, Luke Joseph; Ryder, Robin J.; Clarte, Grégoire (2023) Article accepté pour publication ou publié
-
Brugière, Pierre; Turinici, Gabriel (2022) Document de travail / Working paper
-
Bousquet, Jean; Anto, Josep M.; Sterk, Peter J.; Adcock, Ian M.; Chung, Kian F.; Roca, Josep; Agusti, Alvar; Brightling, Chris; Cambon-Thomsen, Anne; Cesario, Alfredo; Abdelhak, Sonia; Antonarakis, Stylianos E.; Avignon, Antoine; Ballabio, Andrea; Baraldi, Eugenio; Baranov, Alexander; Bieber, Thomas; Bockaert, Joël; Brahmachari, Samir; Brambilla, Christian; Bringer, Jacques; Dauzat, Michel; Ernberg, Ingemar; Fabbri, Leonardo; Froguel, Philippe; Galas, David; Gojobori, Takashi; Hunter, Peter; Jorgensen, Christian; Kauffmann, Francine; Kourilsky, Philippe; Kowalski, Marek L.; Lancet, Doron; Le Pen, Claude; Mallet, Jacques; Mayosi, Bongani; Mercier, Jacques; Metspalu, Andres; Nadeau, Joseph H.; Ninot, Grégory; Noble, Denis; Oztürk, Mehmet; Palkonen, Susanna; Préfaut, Christian; Rabe, Klaus; Renard, Eric; Roberts, Richard G.; Samolinski, Boleslav; Schünemann, Holger J.; Simon, Hans-Uwe; Soares, Marcelo B.; Superti-Furga, Giulio; Tegner, Jesper; Verjovski-Almeida, Sergio; Wellstead, Peter; Wolkenhauer, Olaf; Wouters, Emiel; Balling, Rudi; Brookes, Anthony J.; Charron, Dominique; Pison, Christophe; Chen, Zhu; Hood, Leroy; Auffray, Charles (2011) Article accepté pour publication ou publié
-
Turinici, Gabriel (2022-09) Communication / Conférence
-
Mouhot, Clément; Neumann, Lukas (2006) Article accepté pour publication ou publié