• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On integer and bilevel formulations for the k-vertex cut problem

Furini, Fabio; Ljubić, Ivana; Malaguti, Enrico; Paronuzzi, Paolo (2020), On integer and bilevel formulations for the k-vertex cut problem, Mathematical Programming Computation, 12, 2, p. 133-164. 10.1007/s12532-019-00167-1

Type
Article accepté pour publication ou publié
External document link
https://optimization-online.org/wp-content/uploads/2019/09/7385.pdf
Date
2020
Journal name
Mathematical Programming Computation
Volume
12
Number
2
Publisher
Springer
Pages
133-164
Publication identifier
10.1007/s12532-019-00167-1
Metadata
Show full item record
Author(s)
Furini, Fabio cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ljubić, Ivana cc
ESSEC Business School
Malaguti, Enrico

Paronuzzi, Paolo
Abstract (EN)
The family of critical node detection problems asks for finding a subset of vertices, deletion of which minimizes or maximizes a predefined connectivity measure on the remaining network. We study a problem of this family called the k-vertex cut problem. The problem asks for determining the minimum weight subset of nodes whose removal disconnects a graph into at least k components. We provide two new integer linear programming formulations, along with families of strengthening valid inequalities. Both models involve an exponential number of constraints for which we provide poly-time separation procedures and design the respective branch-and-cut algorithms. In the first formulation one representative vertex is chosen for each of the k mutually disconnected vertex subsets of the remaining graph. In the second formulation, the model is derived from the perspective of a two-phase Stackelberg game in which a leader deletes the vertices in the first phase, and in the second phase a follower builds connected components in the remaining graph. Our computational study demonstrates that a hybrid model in which valid inequalities of both formulations are combined significantly outperforms the state-of-the-art exact methods from the literature.
Subjects / Keywords
Vertex cut; Mixed-integer linear programming; Bilevel programming; Branch-and-cut algorithm

Related items

Showing items related by title and author.

  • Thumbnail
    Mathematical formulations for the Balanced Vertex k-Separator Problem 
    Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2014) Communication / Conférence
  • Thumbnail
    The vertex k-cut problem 
    Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
  • Thumbnail
    The vertex k-cut problem 
    Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
  • Thumbnail
    ILP and CP Formulations for the Lazy Bureaucrat Problem 
    Furini, Fabio; Ljubić, Ivana; Sinnl, Markus (2015) Communication / Conférence
  • Thumbnail
    A new branch-and-bound algorithm for the maximum edge-weighted clique problem 
    San Segundo, Pablo; Coniglio, Stefano; Furini, Fabio; Ljubić, Ivana (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo