• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes

Chambolle, Antonin; Delplancke, Claire; Ehrhardt, Matthias; Schönlieb, Carola-Bibiane; Tang, Junqi (2023), Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes. https://basepub.dauphine.psl.eu/handle/123456789/24517

View/Open
Adaptive_SPDHG_Arxiv.pdf (963.7Kb)
Type
Document de travail / Working paper
Date
2023
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
24
Metadata
Show full item record
Author(s)
Chambolle, Antonin cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Delplancke, Claire
EDF R&D [EDF R&D ]
Ehrhardt, Matthias
Department of Mathematical Sciences [Bath]
Schönlieb, Carola-Bibiane
Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP]
Tang, Junqi
Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP]
Abstract (EN)
In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step-sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Upto-now there is no systematic and successful way of selecting the primal and dual step-sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms, and prove their convergence under weak assumptions. We also propose concrete parametersupdating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.

Related items

Showing items related by title and author.

  • Thumbnail
    A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser 
    Hurault, Samuel; Chambolle, Antonin; Leclaire, Arthur; Papadakis, Nicolas (2023) Document de travail / Working paper
  • Thumbnail
    Accelerated Bregman primal-dual methods applied to optimal transport and Wasserstein Barycenter problems 
    Chambolle, Antonin; Contreras, Juan (2022) Article accepté pour publication ou publié
  • Thumbnail
    A primal–dual simplex algorithm for bi-objective network flow problems 
    Eusebio, Augusto; Figueira, José; Ehrgott, Matthias (2009) Article accepté pour publication ou publié
  • Thumbnail
    FISTA" in Banach spaces with adaptive discretisations" 
    Chambolle, Antonin; Tovey, Robert (2022) Article accepté pour publication ou publié
  • Thumbnail
    L1-Gradient Flow of Convex Functionals 
    Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo