Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022), Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 39, 1, p. 41-85. 10.4171/aihpc/2
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaireVolume
39Number
1Publisher
Elsevier
Pages
41-85
Publication identifier
Metadata
Show full item recordAuthor(s)
Duong, Giao KyLaboratoire Analyse, Géométrie et Applications [LAGA]
Nouaili, Nejla
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Zaag, Hatem

Laboratoire Analyse, Géométrie et Applications [LAGA]
Abstract (EN)
In this paper, we aim at giving a refined behavior to blow-up solutions for the Complex Ginzburg-Landau (CGL) equation in the subcritical case. More precisely, we construct blowup solutions and refine their blowup profile by a more approached accurate description.Subjects / Keywords
Blow-up profile; Complex Ginzburg-Landau equationRelated items
Showing items related by title and author.
-
Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0 Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022) Document de travail / Working paper
-
Nouaili, Nejla; Zaag, Hatem (2018) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Zaag, Hatem; Nouaili, Nejla (2010) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié