Show simple item record

hal.structure.identifierLaboratoire Analyse, Géométrie et Applications [LAGA]
dc.contributor.authorDuong, Giao Ky
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorNouaili, Nejla
hal.structure.identifierLaboratoire Analyse, Géométrie et Applications [LAGA]
dc.contributor.authorZaag, Hatem
HAL ID: 178280
ORCID: 0000-0002-1038-1201
dc.date.accessioned2023-03-08T10:03:40Z
dc.date.available2023-03-08T10:03:40Z
dc.date.issued2022
dc.identifier.issn1873-1430
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/24545
dc.language.isoenen
dc.subjectBlow-up profileen
dc.subjectComplex Ginzburg-Landau equationen
dc.subject.ddc515en
dc.titleRefined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical caseen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversitytrue
dc.description.abstractenIn this paper, we aim at giving a refined behavior to blow-up solutions for the Complex Ginzburg-Landau (CGL) equation in the subcritical case. More precisely, we construct blowup solutions and refine their blowup profile by a more approached accurate description.en
dc.relation.isversionofjnlnameAnnales de l'Institut Henri Poincaré (C) Analyse non linéaire
dc.relation.isversionofjnlvol39en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2022-02
dc.relation.isversionofjnlpages41-85en
dc.relation.isversionofdoi10.4171/aihpc/2en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2023-03-08T09:59:52Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record