The Necessary and Possible Importance Relation Among Criteria in a 2-Additive Choquet Integral Model
Mayag, Brice; Tchantcho, Bertrand (2020), The Necessary and Possible Importance Relation Among Criteria in a 2-Additive Choquet Integral Model, in Marie-Jeanne Lesot; Susana Vieira; Marek Z. Reformat; João Paulo Carvalho; Anna Wilbik; Bernadette Bouchon-Meunier; Ronald R. Yager, Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020, Springer International Publishing : Berlin Heidelberg, p. 496-509. 10.1007/978-3-030-50143-3_39
Type
Communication / ConférenceExternal document link
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274728/Date
2020Conference title
18th International Conference, IPMU 2020Conference date
2020-06Conference city
LisbonConference country
PortugalBook title
Information Processing and Management of Uncertainty in Knowledge-Based Systems: 18th International Conference, IPMU 2020Book author
Marie-Jeanne Lesot; Susana Vieira; Marek Z. Reformat; João Paulo Carvalho; Anna Wilbik; Bernadette Bouchon-Meunier; Ronald R. YagerPublisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-030-50142-6
Number of pages
807Pages
496-509
Publication identifier
Metadata
Show full item recordAuthor(s)
Mayag, BriceLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tchantcho, Bertrand
Abstract (EN)
In the context of the representation of a preference information by a 2-additive Choquet integral, we introduce the necessary and possible importance relations allowing to compare the Shapley values of two criteria. We present some sufficient conditions, using a set of binary alternatives, to get a necessary importance relation among two criteria.Subjects / Keywords
MCDA; Binary alternatives; Shapley value; Choquet integral; Necessary relationsRelated items
Showing items related by title and author.
-
Mayag, Brice; Bouyssou, Denis (2020) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2020) Communication / Conférence
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Communication / Conférence
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Article accepté pour publication ou publié