Principles and Validations of an Artificial Intelligence-Based Recommender System Suggesting Acceptable Food Changes
Vandeputte, Jules; Herold, Pierrick; Kuslii, Mykyt; Viappiani, Paolo; Muller, Laurent; Martin, Christine; Davidenko, Olga; Delaere, Fabien; Manfredotti, Cristina; Cornuéjols, Antoine; Darcel, Nicolas (2023), Principles and Validations of an Artificial Intelligence-Based Recommender System Suggesting Acceptable Food Changes, The Journal of Nutrition, 153, 2, p. 598-604. 10.1016/j.tjnut.2022.12.022
Type
Article accepté pour publication ou publiéExternal document link
https://hal.science/hal-03975185Date
2023Journal name
The Journal of NutritionVolume
153Number
2Publisher
Elsevier
Pages
598-604
Publication identifier
Metadata
Show full item recordAuthor(s)
Vandeputte, Jules
Mathématiques et Informatique Appliquées [MIA Paris-Saclay]
Herold, Pierrick
Physiologie de la Nutrition et du Comportement Alimentaire [PNCA (UMR 0914)]
Kuslii, Mykyt
Physiologie de la Nutrition et du Comportement Alimentaire [PNCA (UMR 0914)]
Viappiani, Paolo

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Muller, Laurent
Laboratoire d'Economie Appliquée de Grenoble [GAEL]
Martin, Christine

Mathématiques et Informatique Appliquées [MIA Paris-Saclay]
Davidenko, Olga

Physiologie de la Nutrition et du Comportement Alimentaire [PNCA (UMR 0914)]
Delaere, Fabien
Danone Research
Manfredotti, Cristina

Mathématiques et Informatique Appliquées [MIA Paris-Saclay]
Cornuéjols, Antoine

Mathématiques et Informatique Appliquées [MIA Paris-Saclay]
Darcel, Nicolas

Physiologie de la Nutrition et du Comportement Alimentaire [PNCA (UMR 0914)]
Abstract (EN)
Background: Along with the popularity of smartphones, artificial intelligence-based personalized suggestions can be seen as promising ways to change eating habits toward more desirable diets. Objectives: Two issues raised by such technologies were addressed in this study. The first hypothesis tested is a recommender system based on automatically learning simple association rules between dishes of the same meal that would make it possible to identify plausible substitutions for the consumer. The second hypothesis tested is that for an identical set of dietary-swaps suggestions, the more the user is—or thinks to be—involved in the process of identifying the suggestion, the higher is their probability of accepting the suggestion. Methods: Three studies are presented in this article, first, we present the principles of an algorithm to mine plausible substitutions from a large food consumption database. Second, we evaluate the plausibility of these automatically mined suggestions through the results of online tests conducted for a group of 255 adult participants. Afterward, we investigated the persuasiveness of 3 suggestion methods of such recommendations in a population of 27 healthy adult volunteers through a custom designed smartphone application. Results: The results firstly indicated that a method based on automatic learning of substitution rules between foods performed relatively well identifying plausible swaps suggestions. Regarding the form that should be used to suggest, we found that when users are involved in selecting the most appropriate recommendation for them, the resulting suggestions were more accepted (OR = 3.168; P < 0.0004). Conclusions: This work indicates that food recommendation algorithms can gain efficiency by taking into account the consumption context and user engagement in the recommendation process. Further research is warranted to identify nutritionally relevant suggestions.Subjects / Keywords
Behavior change; Food recommendation algorithms; Decision sciences; Artificial intelligence; Healthy dietsRelated items
Showing items related by title and author.
-
Pigozzi, Gabriella; Tsoukiàs, Alexis; Viappiani, Paolo (2016) Article accepté pour publication ou publié
-
Saad, Inès; Rosenthal-Sabroux, Camille; Gargouri, Faiez; Arduin, Pierre-Emmanuel (2021) Ouvrage
-
Nefla, Ons; Ozturk, Meltem; Viappiani, Paolo; Brigui-Chtioui, Imène; Raboun, Oussama (2020) Communication / Conférence
-
Nefla, Ons; Brigui, Imène; Viappiani, Paolo; Raboun, Oussama (2020) Communication / Conférence
-
Rosenthal-Sabroux, Camille; Zaraté, Pascale (1997) Article accepté pour publication ou publié