• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Reconstruction of piecewise constant images via total variation regularization : exact support recovery and grid-free numerical methods

Régularisation par la variation totale pour la reconstruction d'images constantes par morceaux : identification du support et méthodes numériques sans grille

Petit, Romain (2022), Reconstruction of piecewise constant images via total variation regularization : exact support recovery and grid-free numerical methods, doctoral thesis prepared under the supervision of Duval, Vincent; Castro, Yohann de, Université Paris sciences et lettres

View/Open
2022UPSLD044.pdf (12.10Mb)
Type
Thèse
Date
2022-12-12
Metadata
Show full item record
Author(s)
Petit, Romain
Under the direction of
Duval, Vincent; Castro, Yohann de
Abstract (FR)
On s'intéresse dans cette thèse à une famille de problèmes inverses, qui consistent à reconstruire une image à partir de mesures linéaires possiblement bruitées. On cherche à analyser les méthodes de reconstruction variationnelles utilisant un régulariseur spécifique, la variation totale (du gradient). Cette fonctionnelle est utilisée en imagerie depuis les travaux de Rudin Osher et Fatemi, menés en 1992. Alors qu'il est bien connu que sa minimisation produit des images constantes par morceaux, présentant une forme de parcimonie (elles sont composées d'un petit nombre de formes simples), ce point de vue n'a à notre connaissance pas été privilégié pour analyser les performances de ce régulariseur. Dans cette thèse, on se propose de mener cette étude. Dans un premier temps, on considère les reconstructions obtenues par minimisation de la variation totale dans un régime de faible bruit, et on étudie leur proximité avec l'image inconnue. Puisque cette dernière est supposée parcimonieuse, on s'intéresse particulièrement à la structure de la reconstruction : est-elle elle-même parcimonieuse, est-elle composée du même nombre de formes, et ces formes sont-elles proches de celles présentes dans l'image inconnue ? Dans une seconde partie, on propose une méthode numérique pour résoudre les problèmes variationnels associés à ce régulariseur. On introduit un algorithme ne reposant pas sur l'introduction d'une discrétisation spatiale fixe. Ceci a l'avantage, contrairement aux techniques existantes, de n'introduire ni flou ni anisotropie dans les images reconstruites, et d'en produire une représentation parcimonieuse.
Abstract (EN)
This thesis is devoted to the recovery of piecewise constant images from noisy linear measurements. We aim at analyzing variational reconstruction methods based on total (gradient) variation regularization. The total variation functional has been extensively used in imaging since the 90's. Its minimization is known to produce piecewise constant images, which hence have some kind of sparsity (they can be decomposed as the superposition of a few simple shapes). However, the performance of this regularizer has to our knowledge not extensively been studied from a sparse recovery viewpoint. This thesis aims at bridging this gap. We first focus on noise robustness results. We assume that sought-after image is sparse, and study the structure of reconstructions in a low noise regime: are they sparse, made of the same number of shapes, and are these shapes close to those appearing in the unknown image? We then turn to numerical methods for total variation regularization. Existing techniques rely on the introduction of a fixed spatial discretization, which often yield reconstruction artifacts such as anisotropy or blur. We propose an algorithm which does not suffer from this grid bias, and produces a sparse representation of the reconstructed image.
Subjects / Keywords
Problèmes inverses; Variation totale; Parcimonie; Inverse problems; Total variation; Sparsity

Related items

Showing items related by title and author.

  • Thumbnail
    Theoretical and Numerical Analysis of Super-Resolution Without Grid 
    Denoyelle, Quentin (2018-07-09) Thèse
  • Thumbnail
    Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems 
    De Castro, Yohann; Duval, Vincent; Petit, Romain (2022) Article accepté pour publication ou publié
  • Thumbnail
    Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems 
    De Castro, Yohann; Duval, Vincent; Petit, Romain (2021) Communication / Conférence
  • Thumbnail
    Image recovery via total variation minimization and related problems 
    Chambolle, Antonin; Lions, Pierre-Louis (1997) Article accepté pour publication ou publié
  • Thumbnail
    Méthodes mathématiques d’analyse d’image pour les études de population transversales et longitudinales 
    Fiot, Jean-Baptiste (2013-09) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo