Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications
Cacciafesta, Federico; Séré, Eric; Zhang, Junyong (2023), Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications, Communications in Partial Differential Equations, 48, 3, p. 355-385. 10.1080/03605302.2023.2169938
Type
Article accepté pour publication ou publiéDate
2023Journal name
Communications in Partial Differential EquationsVolume
48Number
3Publisher
Taylor & Francis
Pages
355-385
Publication identifier
Metadata
Show full item recordAuthor(s)
Cacciafesta, FedericoDipartimento di Matematica Pura e Applicata [Padova]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Zhang, Junyong
Department of Mathematics, Beijing Institute of Technology
Abstract (EN)
In this paper we prove some uniform asymptotic estimates for confluent hypergeometric functions making use of the steepest-descent method. As an application, we obtain Strichartz estimates that are L2-averaged over angular direction for the massless Dirac-Coulomb equation in 3D.Subjects / Keywords
Dirac-Coulomb equation; Strichartz estimates; steepest descent methodRelated items
Showing items related by title and author.
-
Cacciafesta, Federico; Séré, Eric; Zhang, Junyong (2022) Communication / Conférence
-
Cacciafesta, Federico; Séré, Eric (2016) Article accepté pour publication ou publié
-
Cacciafesta, Federico; Séré, Eric (2016) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié