• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A hypocoloring model for batch scheduling

Demange, Marc; Monnot, Jérôme; Paschos, Vangelis; de Werra, Dominique (2005), A hypocoloring model for batch scheduling, Discrete Applied Mathematics, 146, 1, p. 3-26. http://dx.doi.org/10.1016/j.dam.2004.06.016

View/Open
publi127.pdf (281.2Kb)
Type
Article accepté pour publication ou publié
Date
2005
Journal name
Discrete Applied Mathematics
Volume
146
Number
1
Publisher
Elsevier
Pages
3-26
Publication identifier
http://dx.doi.org/10.1016/j.dam.2004.06.016
Metadata
Show full item record
Author(s)
Demange, Marc
Monnot, Jérôme cc
Paschos, Vangelis
de Werra, Dominique
Abstract (EN)
Starting from a batch scheduling problem, we consider a weighted subcoloring in a graph G; each node v has a weight w(v); each color class S is a subset of nodes which generates a collection of node disjoint cliques. The weight w(S) is defined as View the MathML source. In the scheduling problem, the completion time is given by View the MathML source where S=(S1,…,Sk) is a partition of the node set of graph G into color classes as defined above. Properties of such colorings concerning special classes of graphs (line graphs of cacti, block graphs) are stated; complexity and approximability results are presented. The associated decision problem is shown to be NP-complete for bipartite graphs with maximum degree at most 39 and triangle-free planar graphs with maximum degree k for any kgreater-or-equal, slanted3. Polynomial algorithms are given for graphs with maximum degree two and for the forests with maximum degree k. An (exponential) algorithm based on a simple separation principle is sketched for graphs without triangles.
Subjects / Keywords
Approximability; Batch scheduling; Graph coloring

Related items

Showing items related by title and author.

  • Thumbnail
    Time slot scheduling of compatible jobs 
    Demange, Marc; de Werra, Dominique; Monnot, Jérôme; Paschos, Vangelis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Complexity and approximation results for the min weighted node coloring problem 
    Escoffier, Bruno; Demange, Marc; Paschos, Vangelis; de Werra, Dominique; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted coloring on planar, bipartite and split graphs: complexity and approximation 
    Paschos, Vangelis; Monnot, Jérôme; Escoffier, Bruno; Demange, Marc; de Werra, Dominique (2009) Article accepté pour publication ou publié
  • Thumbnail
    Weighted edge coloring 
    Escoffier, Bruno; Demange, Marc; de Werra, Dominique; Milis, Ioannis; Lucarelli, Giorgio; Paschos, Vangelis; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted node coloring: when stable sets are expensive 
    Demange, Marc; de Werra, Dominique; Monnot, Jérôme; Paschos, Vangelis (2002) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo